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ABSTRACT

An analytical technique for the evaluation of combustion
stability in rocket motors with partial length acoustic absorbers
is presented. The combustors considered in this work have con-
centrated combustion zones at the injector, finite mean flows,
cylindrical cross sections, and acoustic liners of arbitrary
length and impedance. Linear three dimensional oscillations in
such combustion chambers are analyzed using an integral equation-
iteration technique. Stability limits in terms of a combustion
response factor are calculated for several values of Mach Number,
length to radius ratio, liner impedance, liner length, liner
location, and nozzle admittance. Results indicate that increas-
ing liner length increases combustor stability substantially at
low Mach Numbers but has a substantially smaller effect for larger
Mach Numbers. Increasing Mach Number or length to radius ratio
have destabilizing effects while liner location has only a minor

effect on stability.



Nomenclature
a - speed of sound
Bi, B - quantities defined on Page A-2
C - quantity defined on Page A-2
fi, f2 - functions defined on Page A-4
G - Gfeen's function
GN - modified Green's function defined on Page A-2
i - unit imaginary = /-1
Im( ) - imaginary part of ()
h| - positive integer
Jm - Bessel Function of the first kind of order m
K - absorber impedance
L - positive integer
L - chamber length
M - Mach Number
m = positive integer
n - positive integer or interaction index
n - outward unit normal vector
P = pressure
E - velocity vector
R - chamber radius
r - radial length
; - position vector
;o - source position vector

Re( ) - real part of ()
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fmn

(1)
uln

DOe ©

vi

surface area of chamber

surface area of acoustic liner
surface area of nozzle exit plane
time

axial velocity

chamber volume

radial velocity

circumferential velocity

axial coordinate

acoustic admittance

ratio of specific heats

acoustic eigenvalue for mode N

circumferential coordinate

imaginary part of complex frequency
]

root of Jm(kzm) =0

normalizing constant defined on Page A-1

matrix discussed on Page A-3

density

sensitive time lag

perturbation velocity potential
normalizing constant defined on Page A-2
acoustic eigehfunction for mode N

complex frequency of oscillation
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Subscripts

C - quantity evaluated on chamber cylindrical periphery

i = 1injector quantity

N - nozzle quantity

o ~ mean value

Superscripts

' - perturbation quantity or derivative with respect to
argument

* — dimensional quantity

~ - chamber quantity with no absorber present

a - designates particular mode integers chosen

(» - approximation of order j
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INTRODUCTION AND SUMMARY

Acoustic liners designed for liquid rocket combustors usually
cover only a fraction of the available wall area. It is therefore de-
sirable to have an analytical means of predicting the stability behavior
of combustors with acéustic absorbers of this tvpe in addition to the
existing analyses which are restricted to fully lined or unlined chambers.
It is the purpose of this report to present an analytical technique of
this type and to demonstrate its efficacy in predicting the stability
characteristics of combustors with partial length liners. Priem (1) has
shown that the combustion zone response, the nozzle admittance, and the
mean flow in the chamber all can have strong effects on the frequency
of chamber oscillations and on the linear stability of the oscillations
both for unlined and fully lined chambers. 1In addition he showed that
the axial dependence of the wave amplitude and phase was quite sensitive
to the parameters mentioned above. Consequently, it is clear that in
order to get a complete picture of the stability behavior of a combustor
with a partial length liner, it is necessary to include mean flow, nozzle,
and combustion zone response effects in any partial length liner analysis.

Because of the discontinuous boundary condition introduced into the
problem by the partial length liner, standard separation of variables
techniques will not work in the solution of the partial length liner
pfoblem. Instead it is necessary to transform the partial differential

equations governing the chamber flow field into integral equations using



Green's theorem and a Green's function for the chamber. Similar trans-
formations have been used previously by Culick (2) and Oberg (3).

These integral equations are then solved using an iterative technique
and yield results in terms of stability limits and pressure and veloc-
ity waveforms. The effects of mean chamber Mach Number, nozzle imped-
ance, liner impedance, length and location, chamber length to radius
ratio and combustion zone response are then investigated using this

iterative solution method.
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THEORY

Combustion Chamber Model

The type of combustor considered in this work is assumed to have a
concentrated combustion zone at the injector, to be of cylindrical cross
section, to be terminated by a supercritical nozzle of known impedance
and to have a finite mean flow (mean chamber Mach Number). An arbitrary
fraction of the cylindrical periphery is assumed to consist of an acoustic
liner of known impedance. The rest of the cylindrical chamber surface is
assumed to have an infinite impedance. Figure (1) shows pictorially the
type of combustor considered.

The response of the combustion zone mass generation rate is assumed
to be pressure dependent only. Therefore, it can be represented using
either a combustion response factor of the type used by Priem (1) or by
the sensitive time lag (n, T) model of Crocco (4). Both models will be
used in interpreting the results of calculations performed in this work.
Downstream of the combustion zone the gasdynamic field is assumed to be
composed of a single component, calorically perfect gas. The flow is
taken to be homentropic and irrotational.

Because of the irrotationality of the flow it is possible to com-
bine the conservation equations into a single partial differential equa-
tion in terms of the velocity potential, ¢, following standard techniques.
(See for example Ref. 1). 1If the oscillations are considered to be of
small amplitide and periodic in time then ¢ = Mz + ¢eiwt, where M is the
mean Mach Number for the flow, z is the axial coordinate nondimension-

alized by the chamber radius, ¢ is the perturbation velocity potential,



i is the square root of -1, w = wR + i)\ is the complex frequency of
the oscillations and t is time nondimensionalized by the ratio of the

chamber radius to the mean sound speed. With these definitions the

linearized partial differential equation for ¢ can be written

32¢ 1
2 2 — 2
Ve + w9 = M 5;7-+ 2iw 5 10

Perturbation pressure and velocity are related to ¢ by the following

expressions

N2
1]

P = - Yiwp - YM'%% , Vo

The boundary condition on Equation (1) is V¢ - n = Bp on the surface of
the chamber (including injector plane and nozzle exit plane). B is the
specific acoustic admittance of the bounding surface in question. On
the portion of the cylindrical walls formed by the acoustic liner
B = Bc = 1/YK, where K is the specific acoustic impedance of ‘the liner.
At the combustion zone (injector plane) B = Bi = M(%-— N), where N is

* 1

the combustion response factor defined as N = %5 and Y is the specific

1

heat ratio. m! is the normalized perturbation in mass flux. If the

time lag model is used Bi = M[n(l—ein) —-%] where n is the interaction
index and T is the time lag. At the nozzle entrance plane B = BN’ the
nozzle admittance. In this work the nozzle admittance used was either
that for a short nozzle or the value obtained using the tabulated results

of Crocco and Sirignano (5) for conical nozzles.



Basic Integral Equations

The single partial differential equation for the chamber flow
(Equation (1)) and the boundary conditions discussed above can be trans-
formed into two integral equations through the use of Green's theorem
and the introduction of a Green's function for the chamber. The result-

ing equations are

¢ = QN + /ﬁN(;/;o) Blvyiwp + yM g%] ds
S

> > 2
+[J/E;N(r/ro)[M237$ + 2Miw %%] av_ (2)
2
w? - n§] =//ﬁ2N(M2 S—Z? + 2Miw g—i) dv_
v
. 30
+ f/éQN(ylw¢ + M x0) ds (3)
S

In Equations (2) and (3) the quantities QN’ N.. and GN have the following

N

meanings. QN is one of the acoustic eigenfunctions for the chamber with

no mean flow, combustion zone, liner, or nozzle. n_ is the eigenvalue

N
for the frequency of oscillation associated with the eigenfunction QN.
GN is a Green's function for the chamber represented as an eigenfunction
expansion in the normal acoustic eigenfunctions of the chamber, with one
specific eigenfunction (QN) deleted from the triply infinite sum. The

exact forms of the eigenfunctions, eigenvalues and Green's function are

given in Appendix A.



Solution of the Equations

It was desired to obtain results in the form of stability limits
in terms of either the real and imaginary parts of the combustion re-
sponse factor of in terms of n and T. In order to obtain results of
this type Equation (3) was rewritten in the following form where Bi,
the complex combustion admittance appears explicitly on the left hand

side of the equation.

52 .. 99 . 3
2 2 2 -
w® = ny —/fﬁzN(M —5;? + 2Miw 32) dV0 f/BQN(Ylw + YM%) dso
_ \ S-Si
Bi ' %
QN(Ylw + YM Bz) dso

S.
1

(4)
In this equation s, is the injector plane surface area and s8-8 is the
rest of the chamber surface area.

Equations (2) and (4) above are sufficient to determine ¢ and Bi
for given mean chamber operating conditions and geometry, and liner length,
impedance, and location for a particular value of the complex frequency,
w. In order to obtain stability limits in terms of Bi’ the equations
must be solved for a range of frequency values. Stability limits in
terms of the combustion response factor or n and T are easily obtained
using the expressions relating these quantities to Bi given earlier.

For a given frequency the following iterative solution method was
followed. First,an initial guess for the form of ¢ and the value of Bi
which will satisfy Equations (2) and (4) was made. In this work the ¢
and Bi resulﬁing from solution of Equation (1) for the case of an un-

lined combustor were used as the initial approximations. This solution



is easily obtained using the technique of separation of variables since
no discontinuous boundary condition is present in this case. These

trial values for ¢ and Bi were then substituted into the integrals on

the right hand sides of Equations (2) and (4), resulting in first approxi-
mations for ¢ and Bi for the lined chamber configuration. These first
approximations were then themselves substituted into the right hand side
integrals to produce improved approximations and so on. The iteration
process continued until successive approximations were suitably invarient.
A one per cent difference in successive values of Bi was then taken to

be the cut off point in most of the calculations performed, though this

degree of accuracy is, of course, arbitrary.



RESULTS AND DISCUSSION

Calculations were performed for several values of Mach Number,
chamber length to radius ratio, liner length, liner impedance, liner
location and nozzle admittance. Results of those calculations in terms
of both neutral stability limits and pressure and velocity profiles
will be presented. Results for the first transverse mode of oscilla-
tion only will be discussed although some second and third transverse
calculations have been done with similar results. Before giving these
results a brief discussion of the convergence and accuracy of the
iterative technique used will be presented.

It was found that the iteration téchnique converged in less than

4

ten ite;ations to within the specified accuracy for almost ail combina-
tions of chamber design parameters investigated with two exceptions.
The first of these was related to the magnitude of the damping effect
bof the liner. If this damping effect was too largé (typically of the
order of 100%Z decay per cycle or 1500 sec"1 damping coefficient) con-
vergence was poor or did not occur at all. A rule of thumb seemed to
be that if the ratio of liner length to liner impedance was less than
about 0.50 convergence was good. Above this value difficulties began
to occur. For a one third length liner, for example, the calculations
were rgstricted to liners with impedances in excess of 0.60Q. This is
clearly a very small impedance for practical liners s0 the restriction
does not seem important for realistic calculations.

The other situation in which convergence was a problem was for the

part of the neutral stability curves occurring in the transition between



various pure and combined modes of oscillation. That is, for example,
for pure first transverse mode oscillations or for combined first trans-
verse, first longitudinal oscillations convergence was good. For fre-
quencies corresponding to oscillations not clearly first transverse or
first transverse, first longitudinal,difficulties in convergence were
experienced. These transition regions appear as loops on the neutral
stability curves. Points along the loops can be found by improving
the initial guess for ¢ and Bi with the inclusion of both modes in
question, though convergence is still slower.than usual.

Because the Green's functionm, GN’ is represented as an eigenfunction

(j)’

expansion, ¢ the jth approximation for the velocity potential is also
represented as a doubly ihfinite series in the r and z directions. (See
Appendix A). Explicitly
w
p L

330 = § + cos n6 ;1 :L:‘l uég) Jm(A, T) cos e

A

where 5 is the analytical solution for ¢ when no liner is present, m
signifies the particular transverse primary mode being considered (e.g.,
(i)
2n

m = 1 denotes the first transverse mode) and u is the coefficient

matrix for the doubly infinite series. 1In order to carry out numerical
calculations uéi) must be finite in dimension. The largest matrix used
in this work had 10 terms in the % series (determining behavior in the
radial direction) and 100 terms in the n series (determining behavior
in the axial direction. Increasing matrix size beyond 10 x 100 can be

shown to affect the stability limit results by less than 3%. Table 1

shows the errors in combustion response factor incurred when smaller
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matrices are used as well as the number of iterations needed for con-
vergence and the computer time required (CDC 6400). For the calcula-.
tions performed in this study a 3 x 30 matrix was used in most cases.
The effect of matrix size on pressure and velocity profiles will be

discussed later.

Stability Limit Results

Convergence of the technique in terms of shape and location of the

linear stability curve is shown in Figure (2). Re(N) and Im(N) are the

mean Mach Number, L/R is the length to radius ratio for the chamber, K
is the acoustic impedance of the liner, and G is the acoustic response
of the nozzle. A value for G of 0.9166 corresponds to a short nozzle
response. The normalized liner length is given by X. A value of X of
2.7 indicates a fully lined chamber if L/R = 2.7. The nondimensional
frequency w/wo is the parameter used along the curves. w is the actual
chamber frequency; wo is the frequency of the acoustic first transverse
mode for no combustion, mean flow, or liner. Progressing along any of
the curves in the direction of increasing frequency, regions to the
right of the curve are linearly unstable while regions to the left are
linearly stable. For the example chosen it is seen that there is no
change in the stability limit location after five iterations. It is

to be noted that the first and second approximations aré noticeably in
error even though M = 0.10 and the usual linear or second order expan-

sions in Mach Number might be expected to be accurate.
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Figure (3) shows the effect of varying liner length on the stability
of a low mean Mach Number chamber. It is readily seen that increasing
the liner length increases the region of linear stability. (The neutral
stability curves shift to the right with increasing X). Moreover, this
increase in stability with liner length is seen to be almost linear for
the Mach Number being considefed. In Figure (4) which is the same type of
plot, the effect of increasing the mean Mach Number is seen. For this
figure all chamber parameters are the same with the exception of the mean
Mach Number which has been increased from 0.1 to 0.33. It can be seen that
"loops" are introduced into the neutral stability curves. These coincide
with the appearance of combined modes of oscillation and have been observed
previously by Priem (1) and others. The stabilizing effect of adding a
liner is diminished with the increase in Mach Number. As can be seen, the
shift to the right caused by the addition of a liner is considerably less
than it was for the case of the low Mach Number chamber in Figure (3).
Finally it is seen from Figure (4) that adding more liner is also less
effective than was the case for M = 0.1. 1Indeed, a 1/3 length liner pro-
vides half the stability improvement of a full liner and a 2/3 length
line provides essentially the same stabilizing effect as a full liner.
Figure (5) shows.the effect of decreasing the impedance (increasing the
damﬁing effect) of the liner while keeping all other parameters at the
values they had in Figure (4). Two faéts are apparent from the figure.
First the linear stability is improved considerably as all three liner
neutral stability curves are shifted to the right from their position

in Figure (4). Second, the .effect of liner length has become even less
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important. Indeed, there seems to be little difference between a 1/3,
2/3 and full liner as far as overall stability improvement. These con-
clusions are verified and perhaps clarified in Figure (6). This figure
shows, for the same chamber parameters and the same liners, neutral
stability plots on the n,T plane. n is the interaction index and T
the sensitive time lag of Crocco's Sensitive Time Lag Model (4). .Fre—
quency increases from the right to the left along the curves. The
region above any neutral stability curve is a region of linear stabil-
ity, the region below a region of linear stability. Thus, shifting a
neutral stability curve upward increases stability. Figure (6) shows
that for lower frequencies the longer liners are slightly more stabiliz-
ing, but that for higher frequencies (e.g., combined lst transverse lst
longitudinal) the shorter liner is actually slightly more effective.
Figures (7) and (8) show, respectively, the effect of increasing Mach
Number for a fixed liner impedance and length and the effect of decreas-
ing the liner impedance for fixed Mach Number and 1inef length. It is
clear from the figures that Increasing the Mach Number is destabilizing
while decreasing the liner impedance provides a stabilizing effect.
Figure (9) shows the effect of increasing the chamber length to
radius ratio on the chamber's stability. It can be seen that increasing
L/R provides a substantial destabilizing effect. Examination of Figures
(7) and (8) indicate that increasing either L/R or M increases the num-
ber of combined modes possible. Figure (10) demonstrates the influence
of liner location. A 1/4 length liner is located at various positions

in the chamber and the neutral stability curve determined for each
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location. If X; = 0 the liner is at the injector end, if X; = 0.75 the
liner is at the nozzle end, and if X; = .40 the liner is in the center
of the chamber. It can-be seen that there is little difference in over-
all effectiveness between X; = 0.0 and X; = 0.40 but that X; = 0.75 is
somewhat less effective. The influence of nozzle response on the neutral
stability limits is shown in Figure (11). Two types of nozzles are com-
pared both with and without 1/3 length liners. One of the nozzles is a
"short" nozzle, the other is a conical nozzle of the type analysed by
Crocco and Sirignano. For ;he short nozzle the nozzle admittance is not
a function of frequency and provides a small damping effect. For the
conical nozzle BN is a function of w, and, acc?;ding to the Crocco~-
Sirignano calculations, provides a small driviﬁg effect in the frequency
range of interest. Comparison of the éhort nozzle and conical nozzle
stability limits for either lined or unlined chambers indicates that,

as is to be expected, the chamber with the short nozzle is always more
stable than the chamber with the conical nozzle. It is important to
observe that the stability improvement caused by the addition of a liner
is approximately the same for both types of nozzles. This means that
stability improvement predictions for lined chambers with short nozzles

are likely to also apply for other types of nozzles.

Pressure and Velocity Profiles

The perturbation pressure and veloéity were calculated as a function
of spatial coordinates using the relationships given in Appendix A. Re-

sults are presented for a frequency value (w/wo) of 0.90. Figure (12)
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is a plot of relative pressure amplitude (ratio of pressure amplitude
at a particular radial and axial location to the pressure amplitude

at the injector for the same radial location) as a function of axial
length for the standard chamber with no liner, with a 1/3 length liner
(X = 0.9) and with a full liner (X = 2.7).

For the unlined chamber the amplitude continuously decreases from
injector to nozzle. For the fully lined cﬁamber the amplitude decreases
very rapidly near the injector and then maintains a more or less constant
value for the rest of the chamber. The 1/3 length liner causes a more
rapid decrease in amplitude near the injector than in the case of the
unlined chamber, but not as pronounced as in the case of the fully lined
chamber. Approximately at the end of the lined portion the 1/3 length
liner curve starts to follow the unlined chamber curve and converges to
it as the nozzle end is approached.

Figure (13) shows the phase angle difference between the injector
and a given location for a given wave. The same chamber configuration
and liners are considered as in Figure (12). It can be seen that for
the unlined chamber the wave downstream of the injector always leads
the wave at the injector with the lead in general inéreasing with axial
length. For the chamber with a 1/3 length liner the phase angle curve
is qualitatively similar except near the injector where a region of
lagging occurs. The fully lined chamber presents a quite different
wave shape with the wave in the center of the chamber lagging the wave
at both the injector and nozzle. The effect of uég) matrix size on the

relative pressure amplitude curve is shown in Figure (14). The large
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matrix is 10 x 30 and the small matrix is 3 x 30. The curves are
qualitatively very similar though the small matrix predicts a somewhat
more rapid decrease in pressure amplitude than does the large matrix.

The radial velocity as a function of axial length at a radial.
location 0.90 of the chamber radius is shown in Figure (15) for the
same chamber with the same three liner configurations. Velocity values
were calculated assuming that the arbitrary amplitude factor for the
velocity potential, ¢, was unity in the case where no liner was present.
It can be seen that, as might be expected, (since v, at the wall # 0)
the addition of a full length liner increases the radial velocity above
the value with no liner present at every axial location. The i/3 length
liner causes an even greater increase in v over the lined portion but
v, gradually tends toward v, for the unlined chamber as the nozzle is
approached.

The dependence of the radial velocity on radius for an axial loca-
tion 0.45 of the chamber radius is shown in Figure (16). As the wall
is approached (r = 1) the radial velocity increases substantially above
the value for the unlined chamber and then decreases rapidly to zero
both for the 1/3 length liner and the full liner. The 1/3 length liner
produces slightly larger radial velocities than does the full length
liner. Because of the use of the Green's Functioﬁ Technique, the wall
boundary condition v, # 0 cannot be satisfied exactly at the wall ex-
cept in the limit as an infinite number of terms are retained in the

3

radial direction in the matrix for uén .

A comparison of small matrix (3 x 30) to large matrix (10 x 100)
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results near the wall is shown in Figure (17). As the number of terms
kept is increased a better satisfaction of the wall boundary condition
is experienced. It is to be recalled that the increase in accuracy in
the determination of combustion response factors improved by less than
5% in going from the 3 x 30 to 10 x 100 matrix. Therefore, it seems
that the detailed satisfaction of the wall boundary condition is rela-
tively unimportant in obtaining neutral stability results. Figure (1R)
is similar to Figure (16) except that the axial location has been
changed to 1.8 of the radius. Here the wall is unlined for the 1/3
length liner chamber. It can be seen that for this case the fully lined
chamber radial velocity is larger than the other two near the wall and
that the curve for the 1/3 lined chamber is considerably closer to the

unlined chamber curve than it was in Figure (16).
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CONCLUSIONS

An analytical method for predicting the linear stability behavior

of rocket combustors with partial length liners has been presented.

It has been shown that the method is applicable over a wide range of

chamber and absorber design parameters. Calculations performed indi-

cated that the following general characteristics of the stability of

combustors with partial length liners are to be expected.

1.

An increase in the mean flow Mach Number provides a de-
stabilizing effect for a given chamber and reduces the
stabilityv improvement provided by an acoustic liner.
Increasing the chamber length to radius ratio results in
the same type of destabilizing effects as increasing the
Mach Number.

Increasing liner length as a means of increasing stability
is most effective at high liner impedances and low Mach
Numbers. For large Mach Numbers and small impedances
partial length liners can be as effective as full length
liners.

Decreasing liner impedance for a given liner length always
provides a marked increase in stability.

Location of a partial length liner is not very important,
though liners located at the nozzle tend to be slightly
less effective than if located elsewhere.

A wide rénge of frequencies of oscillation (including

combined modes) is possible with a partial length liner
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in place. The liner is more effective as a damping
device (even if its impedance is fixed) at some fre-

quencies than it is at others.
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APPENDIX A

Basic Equations

The partial differential equation describing the chamber oscilla-

tions is
2
2 2, _ w2 9°9 .90
Vep + w¢ = M 52 + 2Miw P
. . - . 99
with the boundary condition Vp * n = - yB(iwp + M 3z) on all surfaces.

In order to convert this equation into an integral equation a Green's

Function which satisfies the following equation is introduced
>
V2 + w?G = §(r-1_)

—) 3
where VG » n = 0 on all boundaries and § is the usual delta function.
The Green's Function is represented as an expansion in the orthonormal
eigenfunctions for the chamber with no combustion or mean flow and solid

walls as

2 _ e
w n,Q,mn

Q, (), (r)
Lmn fmn "0
c=2.2
2 m n

where Qﬁmn is one of the orthonormal eigenfunctions given by

_ ntz | _1
kan = cos mH Jm(kzmr) cos 7= Xg_
mn
2.2
n‘m
and nEmn = Tt Azm

. 2 . . (] -
The quantity Azm is a root of the equation [Jm(kgmr)] ., = 0 and A

is determined by the conditionf/ﬁimdv =1
\Y

The modified Green's Function, GN’ which appears in the integral

£mn
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Equations (3)aand (4) is just the Green's Function with one term in the

series removed. That is, the termwith £ = ¢, m =m, and n = o (where

A

L, m and n are arbitrary) is deleted from the series for G,,. Thus

N
@ (o) .
Z Z Z gmn emn (1 - 8(1,2)8 (m,m)S (nyn))
w? %
mn

where §(i,j) =1 if i = j and &8(i,j) =0 if i # j.
In Equation (2) the quantity QN can be interpreted as Q@%ﬁ and in
Equation (3) Ny is equivalent to n@ﬁﬁ' In the solution of Equations

and (3) the velocity potential and combustion response for the cham-

(2)
\&)
ber with no liner but with mean flow are used as first approximations

for ¢ and Bi' These quantities are called respectively 5 and Bi. The

form of ¢ can be found using the technique of separation of variables

and is given by

$ - c?s md JA(XﬁAr)(eiZBI +C 1zB2)
A:?AA lp m m
Lmn
1
WM + [0+ 02-1) OF, - w?)]7
where' B, =
(1-M?)
1
wM - [w?M® + (Mz—l)(kéﬁ - w?)]”
Bz = )
iLB; [B; + BN(Yw + YMB,; )]
C = e

il [Br + B (w + YMB, ]

and ¢ is determined by the condition

fff$91mndv=l°
'

Bi is then determined from the boundary condition at the injector,



3
0z

= — 53
(yiwp + yM Bz)

Bi
Substitution of $ and éi into Equations (2) and (3) as the initial step
in the iteration procedure described earlier eventually leads to the
following two relationships for the calculation of the jth approxima-

tions for ¢ and Bi

(D 15 con T TP 50,50 con
"2 n

éi[sszz ($)ds-sNﬁ2Nfz @ 3F) asn fQNfl (¢(j)—¢)dv—chQNf2 (¢(j,))ds
3 Vv 3

g+ _ _°L °N c
i

fQNfz (¢ (3 )ds

S,
1

-1

is a matrix dependent only upon ¢(

(1)
L

where U a and Bij) (Uéi) depends

(1), (D ~ r s dy
Bi H Bi Sepends on ¢ and Bi)’ fa(y) = viwy + M P
) )

‘= 3y .
£1(y) 24w Py + M 5,20 S4 1s the surface of the injector, 5N is the

surface of the nozzle exit plane, sc is the surface of the liner and V

on $ and

is the chamber volume. For any solution, values of E, a, and n must be
selected. These integers will determine the general acoustic waveform

of ¢ expected and the exact waveform for $. For example m = 1, L= 1,

n=0 gives the solution for the pure first transverse mode. If the

wrong values of a, @, n are selected for a given frequency value the

iteration technique will fail. That is, if the solution is a first
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transverse mode type oscillation and a combined first transverse - second
longitudinal mode is assumed (by taking m = 1, 2 = 1, n = 2) the itera-

tion scheme will not work until the value of n is changed to n = 0.
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APPENDIX B

Computer Program

This section describes the use of the computer program, COMBADM,
for the determination of the neutral stability curves for a given set
of input parameters which characterize the combustion chamber. The
program was written in FORTRAN IV to run on a CDC 6400. Very little
effort was made to optimize the program with respect to running time.

The program, COMBADM, calculates two neutral stability curves
for a given combustor as a function of frequency. The first combustion
admittance calculated for each frequency is the neutral stability point
for the combustor with no liner. This point corresponds to BETAWI,in
the output. The last value of the combustion admittance listed for
each frequency is for the combustor with the acoustic liner. This
point is determined by the method of successive approximations. The
first approximation to the combustion admittance for the lined chamber
is that of the unlined combustor. The combustion admittance is then
used to calculate a velocity potential for the lined combustor and
then a new admittance is calculated for the combustor. This technique
proceeds until the error between successive iterations is within pre-
determined limits. The accuracy of the combustion admittance calculated
is limited only by the size of the coefficient matrix used in the cal-
culation of the velocity potential.

The iﬁput parameters are:

1. LENGNO - the problem identifier

.2. F ~ the initial frequency ratio of the combustor

3. ALENGTH - the length to radius ratio for the combustor



10.

11.

12.

13.

14.

15.

16.

17.

18.

AMACH

GAMMA

X1

X2
ERROR1
ERROR2
LHAT
MHAT
NHAT
LDEX
NDEX

MATRIX

FINC

B-2

mean flow Mach Number

ratio of specific heats

complex number specifying the acoustic impedance
of the nozzle

complex number specifying the acoustic impedance
of the liner

the beginning of the liner opening with respect
to the injector

the end of the liner opening with respect to

the injector

the maximum acceptable error in the real part of
the combustion admittance

the maximum acceptable error in the imaginary part
of the combustion admittance

radial acoustic mode number

transverse acoustic mode number

longitudinal acoustic mode number

specifies the number of radial terms in the
coefficient matrix

specifies the number of longitudinal terms in
the coefficient matrix

identifier used to determine whether or not the
coefficient matrix is printed out

the increment size of the frequency ratio
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19. FMAX - the maximum frequency for which a combustion
admittance is calculated
The output from the program lists the input variables, the com-

bustion admittance and the combustion impedance.

Sample Calculation

An example of the output from COMBADM is shown on the page imme-
diately following the listing of the program. The example shown is
typical of many cases that can be run. In the output the neutral sta-
bility point for the unlined combustor is denoted as BETAWI and the
neutral stability point for the lined combustor to the specified accuracy
is the last two numerical values listed, where the first of these values,
BETAI(J), is the combustion admittance and the latter value, N, is the
combustion impedance. The only problem likely to be encountered in the
program is the selection of the appropriate longitudinal acoustic mode
(NHAT), i.e., as the frequency increases higher order longitudinal modes
are more dominant in the solution and NHAT often must be increased from
zero to one_or even two in order for the iteration process to converge.
(See Appendix A)

The form of the input for COMBADM is shown immediately following

the list of the program. The input is on three data cards as follows:

Card 1
Columns Variable Type
l—iO LENGNO Alphanumeric word
11-20 Re (F) Real number

21-30 Im(F) _ Real number
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Columns Variable Type
31-40 ALENGTH Real number
41-50 AMACH Real number
51-60 GAMMA Real number
61-70 Re(G) Real number
71-80 Im(G) Real number

Card 2
Columns Variable Type
1-10 Re (AK) Real number
11-20 Im(AK) Real number
21-30 X1 Real number
31-40 X2 Real number
41-50 ERROR1 Real number
51-60 ERROR2 Real number
61-63 LHAT Integer
64-66 MHAT Integer
67-69 NHAT Integer
70-72 LDEX Integer
73-75 | NDEX Integer
76-80 MATRIX* Alphanumeric word

*If the coefficient matrix is to be printed out, then MATRIX is printed
as YESBB, where B signifies a blank.
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Card 3
Columns Variable Type
1-10 Re (FINC) Real number
11-20 Im(FINC) Real number
21-30 Re (FMAX) Real numbér
31-40 Im(FMAX) Real number.

The last page is the output and includes the essential input

variables and the two neutral stability points.
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Nomenclature

COMBADM
W OMEGA
M AMACH
Y GAMMA
n Function ETA
J'(X, ) Function BESPRIM
m' Zm
J (A, ) Function BESSEL
m 4m
1
Ag Function FNORM

mn

Y Function PSI
B, BETAL
B, BETA2
C C
B, BETAWI
Bi BETAI or TETAIS
B.. BETAC
By BETAN

Hon AMU
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PROGRAM COMBADM(OQUTPUT=101, TAPE6=0UTPUT, INPUT=101, TAPES=|NPUT)
COMPLEX BETA1, BETA2, BETAN, BETAC, BETA], BETAW], OMEGA, C, AK1,
1 AK2, PSI2, AMU, BETA]S, (12
COMPLEX G, AN, AK, A, A4, A5, BETA, DuMi, DuM2, PSI, DUMMY, G1,
1 62,F,AKA,FINC,FMAX
COMMON / BLKA / BETA1, BETA2, AMACH, GAMMA, OMEGA, ALENGTH, C, AK!
1, AK2, BETAN, RLMDA, BETA], BETAC, BETAWI, LHAT, MHAT, NHAT,
1PS12,X1,X2/BLKB/AMU(10,30,29) ,BETAIS(30) ,A :
COMMON C121(30,30),1SET,LDEX,NDEX,ERRORY, ERRORZ2
2 READ (5, 200)LENGNO.F.ALENGTH AMACH, GAMMA, G, AK, X1, X2, ERROR! , ERROR2,
1LHAT ,MHAT ,NHAT,LDEX,NDEX,MATRIX,F INC, FMAX
IF (EOF , 5150, 3
3A= CHPLX (1.0, 0.0)
RLMDA = BESPRIM ({ MHAT + 1 , LHAT )
7 CONTINUE
NHA] = NHAT + 1
OMEGA=F*1,.84118378
BETAC = 1./GAMMA/AK
BETAN = AMACH * (G - 1, / GAMMA )
BETA=CSQRT (OMEGA * AMACH  OMEGA * AMACH+ (AMACH® AMACH-1.) * (RLMDA®*2 -
10MEGA*OMEGA) ) /(1. ~AMACH® AMACH)
BETA1=(QMEGA® AMACH) /(1. -AMACH® AMACH) +BETA
BETAZ (BETA1)-2,'BETA
= CMPLX( -AIMAG(BETA1), REAL(BETAY))
DUHI = CMPLX( -AIMAG(BETA2), REAL (BETA2))
C = - CEXP(ALENGTH'A4) / CEXP(ALENGTH*DUM!)
C =C * (BETA! + BETAN * GAMMA ' (OMEGA + AMACH * BETAl )) / (
1 BETA2 + BETAN °* GAMMA * (OMEGA + AMACH * BETA2 ))
PS12 = PS}( DUMMY )*°2
AK1=(OMEGA+ AMACH °*BETA1+4C* (OMEGA+ AMACH'BETA2) ) *GAMMA
AK1= CMPLX (-A]MAG (AK1) ,REAL 1AK1))

DUM! =-CMPLX (-AIMAG (BETA1),REAL (BETA1))
DUM1 = DUM1*ALENGTH
DUM2 = CMPLX(-A]MAG (BETA2) ,REAL (BETA2))
DUM2 = DUM2*ALENGTH

AK2 = ({(QMEGA+AMACH®BETA1) *CEXP(DUM1)+(OMEGA+AMACH BETA2) *C*CEXP
1DUM2) ) *GAMMA
AK2 = CMPLX (-AIMAG (AK2) ,REAL (AK2))

CALL CALCA4( A4, A5 )
BETAW] = (OMEGA®®2 - ETA(LHAT,MHAT NHA[,ALENGTH,RLMDA) - (AMACH G2 (

THHAT) /EPSTZN(LHAT,MHAT, NHAT ALENGTH RLHDA)+BETAN AK2/EPSTZN(LHAT,
IMHAT  MNHAT, ALENGTH, RLHOA) ) ' INHAT+2) ) /PS T (DUMMY) ) /A4
BETAl = BETAWI - A5 / A4



BETAIS(1)=8LTAI
WRITE(6,100) LENGNO
WRITE(6,110) LDEX , NODEX
WRITE(6,116) AMACH
WRITE(6,117) GAMMA
WRITE(6,118) QMEGA
WRITE(6,119) ALENGTH
WRITE(6,101) LHAT, MHAT, NHAT
WRITE(6,115) X1,X2
WRITE(6,113) F
WRITE(6,114) A
WRITE(6,102) BETAN
WRITE(6,120) 6
WRITE(6,121) BETAC
WRITE(6,108) AK
WRITE(6,105) BETAWI .
AN = 1, / GAMMA - BETAW] / AMACH
WRITE(6,103) AN
BETAW! = ( BETA! + C * BETA2 ! 7/ ( GAMMA * (OMEGA * (1. ¢+ C ) +
1 AMACH * ( BETA! + C * BETA2 ) ) )
WRITE(6,112) BETAWI
AN = 1, / GAMMA - BETAW] / AMACH
WRITE(6,103) AN
WRITE(6,109)  BETAIS(1)
AN = 1, / GAMMA - BETAIS(1) / AMACH
WRITE(6,103) AN
JX = 30
JY = JX - 1
CALL CALMU! JY )
JX = JY + 1
IF ( MATRIX .NE. 3HYES ) G0 T0 1
D06 J=1, Jr
KS = 1
KF = 3
WRITE(6,106) J, KS, KF

D06 L=1,30
6 WRITE(6,104) L, ( AMUII,L,J), | = KS, KF )
CONTINUE
F=F +« FINC
IF ( JX .EQ. 30 .OR. F .GT, FMAX ) 2, 7
50 CALL EXIT
100 FORMAT(®1 THIS IS ENGINE NUMBER °*A10)
101 FORMAT(®0 THE PRIMARY MODE ASSUMED IS LHAT = °,]12,° MHAT = *,]2

—



INHAT =
102 FORHAT( 0
103 FORMAT(°+

-.

BETAN ,ZGZ‘ 14)

104 FORMATI(® °,l3°° 10615 6)

105 FORMAT(°0
106 FORMAT(°0

107 FORMAT(°0°
108 FORMAT(°+°,70%,° K

109 FORMAT(®0

*o70%,° N = ° 2621, 14,°1°)
BETAR] = ",2621.14)
N J EQuAL °,12,° L EQUAL °,11,* T0 °,12)
,621.14,° WAS THE TIHE FOR THE ITERATION *,621.14)
= °x2621.14)
BETAI( 1) = °,2621.14)

110 FORMAT(°+°,70%,° THE COEFFICIENT MATRIX IS *,12,* x*,13)

112 FORMAT("0
113 FORMAT(°0

BETANID = *,2621,14)
W/WO = 2621.14)

114 FORMAT(®+°*,70X," A = *,2621,14)
115 FORHAT(°+° 70x,° THE LINER BEGlNS AT °*,F6.4," AND ENDS AT °*,F6.4)

116 FORMAT('0

THE MACH NUMBER IS *,621,14)

117 FORMAT(*+*,70X,* THE RATIQ OF SPECIFIC HEATS 1S *,621.14)

118 FORMAT(0

119 FORMAT(*+*
120 FORMAT(*+*

121 FORMAT('0

THE FREQUENCY 1S *, 2621.14)

,70X,° THE LENGTH OF THE COMBUSTOR IS *,621,14)
J70X,° 6 = ¢, 2621.14)

BETAC = °, 2621.14)

200 FORMAT(A10,7F10,0/6F10.0,513,45/74F10.0)

END

FUNCTION BESPRIM (M, L)

DIMENSION
C*°*°*° THESE ARE
C*°°* SET EQUAL
A1 i) =
Af2 ,
Al3 ,1)
A4 ,1)
AlS ,1)
Al ,1)
AL7 1)
A8 ,1)
A{9 ,1)
AL10,1)
C**** THESE ARE
€**°® SET EQUAL
Al ,2) =
A2 ,2)
A3 ,2)
A4 ,2)
A(5 ,2)

Mo % o8 o© 0 K

A(10,5)

THE ROOTS OF THE DERIVATIVE OF THE BESSEL FUNCTION OF ORDER ZEO
10 ZERO

0.00000000

3.83170597

7.01558667

10.17546814

13.32369194

16.47063005

19,61585851

22.76008438

25.90367209

29.04682853

THE ROOTS OF THE DERIVATIVE OF THE BESSEL FUNCTION OF ORDER ON
T0 ZERO

1.84118378

5.33144277

8.53631637

11,70600490

14.86358863
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A6 ,2) = 15.01552786
AL7 ,2) = 21.16436986
AiB ,2) = 24.31132686
A9 ,2) = 27.45705057
A(10,2) = 30.60192297

C°°"° THESE ARE THE ROOTS OF THE DERIVATIVE OF THE BESSEL FUNCTION OF ORDER T
C°*°* SET EQUAL TO ZERQ
201 ,3) = 3.05423693

A12 .3) = 6.70613319

A3 3] = 9.96946782

Al4 ,3) = 13,17037086
A5 ,3) = 16.34752232
Al6 ,3) = 1951291278
AL7 ,3) = 22.67158177
A(8 ,3) = 25.82603714
A9 ,3) = 28.97767277
AL10,3) = 32.12732702

C**** THESE ARE THE ROOTS OF THE DERIVATIVE OF THE BESSEL FUNCTION OF ORDER 3
C°*** SET EQUAL TO ZERO

A1 ,4) = 4,20118894

Al2 ,4) = B.01523660

A3 ,d) = 11,34592431
Ald ,4) = 14.58584829
AlS ,4) = 17,78874787
A6 ,4) = 20.97247694
AL7 ,4) = 24,14489743
A(B ,4) = 27.31005793
A9 ,4) = 30.4702688!

A(10,4) = 33.62694918

C°°** THESE ARE THE ROOTS OF THE DERIVATIVE OF THE BESSEL FUNCTION OF ORDER FOR
c°®°* SET EOUAL T0 ZERO

A1 ,5) = 5,31755313

A2 5‘ = 0,28239629
A13 ,5) = 12.68190844
Ald ,5) = 15.96410704
A5 ,5) = 19,19602880
Al ,5) = 22.40103227
A(7 ,5) = 25.58975968
A(8 ,5) = 28.76783622
Al9 ,5) = 31,93853934
A(10,5) = 35,10391668
1 BESPRIM = A(L, M)

RETURN
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ENTRY BESSE:.

C*°°" THESE ARE THE BESSEL NUMBERS OF ORDER ZERO FOR THE ZERQS OF THE BESSEL

C**"* FUNCTION
ALY ,1) =1.00000000
A2 ,1) = -0.4027588095
A3 ,1) = 0.301128303
At4 1) = -0,249704877
A(S ,1) = 0.218359407
At6 ,1) = -0.19645371
AL7T ,1) = 0.180063375
A(B ,1) = -0.167184600
Al9 ,1) = 0.156724985

A(10,1) = -0.148011108
C**°* THESE ARE THE BESSEL NUMBERS OF ORDER ONE FOR THE ZEROS OF THE BESSEL
C**** FUNCTION

A1 ,2) = 0.5818649368
A2 ,2) = -0.3461258542
Al3 ,2) = 0.273298113)
A4 ,2) = -0.233304416
A(S ,2) = 0.20701265)
A6 ,2) = -0.188017488
A7 ,2) = 0.173459050
A(8 ,2) = -0.161838211
A(9 ,2) = (.152282069

A(10,2) = -0.144242905
C*°** THESE ARE THE BESSEL NUMBERS OF ORDER TWO FOR THE ZEROS OF THE BESSEL
C®°*° FUNCTION

A1 ,3) = 0.4864961885
Af2 ,3) = -0.3135283099
Al3 ,3) = (.2547441235
A4 ,3) = -0.220881581
AlS ,3) = 0.197937434
A6 ,3) = -0.1€1010000
A7 ,3) = 0.167835534
A(8 ,3) = -0.157195167
Al9 ,3) = 0.148363778
A(10,3) = -0.140878333

C**** THESE ARE THE BESSEL NUMBERS OF ORDER THREE FOR THE ZEROS OF THE BESSEL
C**** FUNCTION

A1 ,4) = (.4343942763
A2 ,4) = -0,2911584415
A3 ,4) = 0.240738175

A4 ,4) = -0.210965204
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A(S ,4)
A6 ,4)
A7 ,4)
A8 ,4)
A9 ,4)
A(10,4)

THESE ARE

FUNCTION

A(1 ,5)
A2 ,5)
A3 ,5)
Ald ,5)
A(S ,5)
A6 ,5)
Al7,5)
A8 ,5)
A{9 ,5)
A(10,5)
60 TO 1
END
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0.190419022

-0.175048405

0.162954965

-0.153102409

0.144866574

-0.137844513

THE BESSEL NUMBERS OF ORDER FQUR FOR THE ZEROS OF THE BESSEL

0.3996514545
-0.2743809949
0.229590468
-0.202763849
0.184029896
-0.169878516
0.158655372
-0.149451156
0.141714307
-0.135086328

SUBROUTINE BETAlJ(J)
COMPLEX AIS0Q,Al51,A152,A153,A155,A155J,0UM!,PST,AMU,BETA]S, COMEGA,

1DUMMY ,FNORM, A, C12,SUMT,SUM2,SUM3,SUM4 , AN

COgPLgx BETAl, BETA2, BETAN, BETAC, BETAl!, BETAW!, CMEGA, C, AK!,
1AK2, PSI2
COMMON / BLKA / BETA1, BETA2, AMACH, GAMMA, OMEGA, ALENGTH, C, AK!
1, AK2, BETAN, RLMDA, BETA{, BETAC, BETAWI, LHAT, MHAT, NHAT,
1PS12,X1,%X2/BLKB/AMU(10,30,29) ,BETAIS(30),A

COMMON C12(30,3C), ISET,LDEX,NDEX,ERRORY,ERROR2

NHA] = NHAT + 1

COMEGA=CMPLX (-A]MAG (OMEGA) ,REAL (OMEGA) )
SUM1=SUM2=SUM3=SUM4=CMPLX (9.0,0.0)

00 10 LP = 1, LDEX

DUM =BESSEL (MHAT#+1,LP)

DO 10 NP = 1 , NDEX

SUM4=SUM4 + AMUILP,NP,J=1)"DUM °‘C12(NHAT+1 NP}

CONTINUE

DO 20 NP = 1 |, NDEX

DUM1=AMU(LHAT NP, J-1)

SUM1=SUMI + DUM!

SUM2=SUM2 + DUMI*(~1.)° " (NP +1)

IF (NP_EQ.NHAT +1) GOTO 20

SUM3=SUM3 + DUMI°*2. COMEGA® INP-1)°2/((NP-1)°**2 -NHAT'*2)
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1°01. =(=1.7"* (NP +NHAT -1))

20 CONTINUE
A150=BETAI'AK1/PSI(DUHHY)/EPSIZN(LHAT,HHAT,NHAT,ALENGTH,RLHDA)
A151=BETAN GAMMA*COMEGA® ((-1.)* *NHAT) *SUM2 FNORM(LHAT ,MHAT NHAT,
TRLMDA, ALENGTH)/EPS!ZN(LHAT MHAT ,NHAT,ALENGTH,RLMDA!

A152=(-1.)." AMACH*SUM3* FNORH(LHAT HHAT NHAT, RLHDA ALENGTH) /EPSIZNI
TLHAT, MHAT, NHAT ALENGTH,RLMDA)

A153= BETAC FNORH(LHAT MHAT ,NHAT,RLMDA, ALENGTH) "BESSEL (MHAT+1 LHAT)
1°SUH4/EPSIRZN(LHAT,MHAT,NHAT,ALENGTH,RLHDA)

A155=(AK1/PS] (DUMMY) + GAMMA*COMEGA'FNORM(LHAT MHAT NHAT,RLMDA,
TALENGTH) *SUM1) /EPSIZNILHAT,MHAT NHAT, ALENGTH,RLMDA)
BETAIS(J)=(A]50 -Al51 - Al52 - A153)/A155

WRITE(6,100)J, BETAIS(J)

AN = 1, / GAMMA - BETAIS(J) / AMACH

WRITE(6,101) AN

JS = J

A1S0=BETAIS(J)-BETAIS(J-1)

1F( ABS(REAL (A150) /REAL (BETAIS(J-1))) . LE.ERRORT ,AND.ABS{AIMAG(AIS

10) /AIMAG (BETAIS(y-1))) LE.ERROR2) 60 TO 2
RETURN
2 ISET =
IF ( REAL(AN).GT,1,8,0R, AIMAG(AN).GT, 1, u)CALL EXIT
RETURN

100 FORMAT (0 BETAI(',12,') = *,2621.14)
101 FORMAT(*+*,70X," N = *,2621.14,°1")
END
SUBROUTINE CALCA4( A4, AS')
COMPLEX BETA1, BETA2, BETAN, BETAC, BETAl, BETAW!, OMEGA, C, AK!Y,
1 AK2, PSI2
COMPLEX A4, AS, PSI, DUMMY, 61, 62
COMMON / BLKA 7/ BETA!, BETA2, AMACH, GAMMA, OMEGA, ALENGTH, C, AK!
1, AK2, BETAN, RLMDA, BETA], BETAC, BETAuW!, LHAT, MHAT, NHAT,
1 PSI2,X1, X2
A4 = AK1/EPSIZNILHAT,MHAT,NHAT,ALENGTH,RLMDA) /PS] (DUMMY)
A5=BETAC® (G1(X2,NHAT)=G1 (X1 NHAT))/EPSIKAT (LHAT ,MHAT ,NHAT ,ALENGTH,
TRLMDA} /PS| (DUMMY)
RETURN
END
SUBROUTINE CALMU( JP )
COMPLEX AMY,G1,62,PS1,DUMMY, FNORM,A,DUM3,C12
COMPLEX Dun1 DUHZ BETAIS suns S,COMEGA, SUM1, SUM2, SUM3, SUM4
COMPLEX BETA1 BETA2, BETAN, BETAC BETAl BETAul OMEGA, C, AK!,

1AK2, PSI2
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COMMON / BLKa / BETA1, BETA2, AMACH, GAMMA, OMEGA, ALENGTH, C, AK!
1, AK2, BETAN, RLMDA, BETA], BETAC, BETAMI, LHAT, MHAT, NHAT,
1PS12,X1,X2/BLKB/AMU(10,30,29) ,BETAIS(30),A
COMMON C121(30,30), 1SET,LDEX,NDEX,ERROR!,ERROR2
ISET = 0
DO SO L =1, LDEX
RLMDA1= BESPRIMI{MHAT#+1,L)
AC= BESSEL (MHAT+1,LHAT) /BESSEL (MHAT+1,L)
DO 50 NX = 1 , NDEX
N=NX-1
IF{L.EQ.LHAT.AND.N.EQ.NHAT) GOTO 40
DUMI= CMPLX(0.,0.)
IF (L.EQ.LHAT) DUM1=(BETAI-BETAWD)® AK1/{EPSIZNILHAT ,MHAT N,ALENGTH,
TRLMDA) )
DUM] = A*(BETAC' (G1(X2,N)=G1{X1,N))/EPSIKAT (LHAT MHAT N,ALENGTH,RLMD
1A1) "AC+DUMY)
DUM2=DUM1/ ( (OMEGA® *2-ETA(LHAT ,MHAT NX, ALENGTH,RLMDA 1)) *PS| (DUMMY) )
GOTO 50
40 DUM2=1.- A
50 AMU(L,NX,1)=DUM2/FNORM{LHAT ,MHAT ,NHAT,RLMDA, ALENGTH)
NX = 1
COMEGA=CMPLX (~A]MAG (OMEGA) ,REAL (OMEGA))
DUM1=CMPLX (0.0,0.0)
DUM2=CMPLX (0.0,0.0)
N = NHAT
NX = NHAT + 1
DO 2 NY = 1 , NDEX
NP=NY-1
IF(N.EQ.NP) 8,7
7 CIZ(NX NY) = GAMHA’Z /(N“Z NP**2) ' (ALENGTH® COMEGA/3, 1415926 ( (N+NP)
*(SIN{ N~ NP) 3. 1d15926 X2/ALENGTH) -SIN{ IN-NP) *3, 1415926 X1/ALENGTH
1))+(N -NP) °* (SIN((H+NP) 3. 14.5926 X2/ALENGTHI -SIN{(N#NP) 3, 1415926 X
1 ALENGTH) ) ) - AMACH®NP* { (NP+N) * {COS ( INP-N) '3, 1415926 X2/ALENGTH) -CO
1S{(NP-N)*3, 1415926 X1/7ALENGTH) ) 4 INP-N) * (COS{(NP+N) *3.1415926°X2/AL
TENGTH) -COS{ (NP+N) *3.1415926°X1/ALENGTH) ) ) )
60 T0 2
8 IFINP.EQ 0)9,10
G C12INX,N“)=(X2-X1) *COMEGA*GAMMA
60 T0 2
0 OCI2(NX, NY)=GAMMA® [ {ISIN(2."N'3. 1415926 X2/ALENGTH) ~SIN(2.°N*3. 1415
1926 Y1/ALENGTH) ) /4. /N/3. 1415926 " ALENGTH+ (X2-X1)/2. ' COMEGA-AMACH/2
"(SININ®3.1415926"x2/ALENGTH) " *2-SININ*3,1415026° X1 /ALENGTH) * *2))
2 conrlqu
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CALL BETAlJ( 2 )
1F(JP.EQ.1) RETURN
DO 1T NX =1 , NDEX
M= NX -1
DO 1 NY = 1 , NDEX
NP=NY-1
IF(N.EQ.NP) 3,4
4 C?Z(NV NY)= GAHHA/Z /(N"Z NP**2) " (ALENGTH® COHEGA/S 1415926 { (N+NP)
1 (SIN{ (N- NP) 3. 1415926 X2/ALENGTH) -SIN( (N-NP) *3, 1415926 X1/ALENGTH
1))+ (N-NP)° (S]N((N+NP) 3. 1415926 XZ/ALENGTH) SlN((N+NP) 3,1415926'X
T1CALENGTH) ) ) =AMACH NP ( (NP+N) * {COS((NP=N)*3,1415926°x2/ALENGTH} -CO
1S{(NP-N)"*3.1415926°*X1/ALENGTH) ) + INP-NJ * (COS( INP+N) *3,1415926"'X2/AL
TENGTH) ~COS ( (NP+N) *3,1415926 X1 /ALENGTH) ) ))
60 T0 1!
3 IF(NP.EQ.0)5,6
5 C121(NX, NY) = (X2-X1) *COMEGA*GAMMA
60 TO |
6 C12INX,NY)=GAMMA® (((SIN(2.°N"3.1415926 X2/ALENGTH) -SIN(2,°N*3,1415
1926°X1/ALENGTHI ) /4. /N/3.1415926  ALENGTH+ (X2-X1)72.) *COMEGA-AMACH/2
1.  (SININ®3.1415926°X2/ALENGTH) **2-SININ"3,1415926 X! /ALENGTH) **2))
1 CONTINUE
DO 60 uU=2, JP
Do 80 LS = 1, LDEX
DO 80 NX = 1 , NDEX
NS=NX-1
RLMDA2=BESPRIM{ MHAT + 1, LS)
DUM3 = BETACEPSIZNI(LHAT,MHAT, NS ,ALENGTH,RLMDA) *BESSEL (MHAT#+1,
TLHAT) ZEPSIKAT (LS, MHAT NS, ALENGTH,RLMDA2) /BESSEL (MHAT+1,LS) '
DUMI = CMPLX( 0.0, 0.0 )
SUMS=CMPLX(0.,0.)
IF{ LS .EQ. LHAT .AND. NS .EQ. NHAT ) 15, 1¢
15 AMU(LHAT, NX,J) = CMPLX( 0.0 , 0.0 )
60 TO 80
16 SUM1=SUM2=SUM3=SUM4=CMPLX(0.0,0.0)
DO 90 LP = 1 , LDEX
RLMDA3=BESSEL (MHAT +1,LP)
RLMDA4=BESSEL (MHAT +1, LHAT)
DO 90 NY = 1 , NDEX
SUM4=SUM4 + AMU(LP,NY,J-1)"C12(NX, NY)
G0 CONTINVE
SUM4=SUM4°*DUM3 ‘RLMDA3/RLMDA4
D0 21 NP = 1, NDEX
DUM1I=AMU(LS NP, J-1)
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SUM1=SUM1 +LUM
SUM2=SUM2 + DUMI®(-1,)°* (NP +1)

IF(NP.EQ.NX) GOTO 2!

SUM3=SUM3 + DUM1°2,*COMEGA® (NP=1)"*2 “(1.~(=1,) " (NP+NX)) /I
T(NP-1)°"°2 -NS*°2 )

CONTINUE

SUMT=BETAIS{J) “GAMMA *COMEGA " SUMI
SUM2=BETANGAMMA“COMEGA® (-1.) " *NS*SUM2

SUM3=SUM3 + AMACH®(3.1415926°NS)"**2./2./ALENGTH' AMU(LS, NX,J-1)
SUM3={-1.) *AMACH®SUM3

DUM1=CMPLX(0.0,0.0)

IF(LS.EQ.LHAT) DUMI=(BETAIS(J) - BETAW!) *AK1

DUM1=DUM1 +DUM3* (G1(X2,NS) =G1 (X1 NS))

DUM1=DUM1/PS] (DUMMY} /FNORM(LHAT ,MHAT ,NHAT ,RLMDA, ALENGTH)
AMU(LS,NX,J)=(DUM1 +SUM1 +SUM2 +SUM3 + SUM4)/ (OMEGA''2 - ETA(LHAT
T, MHAT  NX, ALENGTH,BESPRIM{MHAT+1,0S) )} /EPSIZN{LHAT ,MHAT NS, ALENGTH,
2RLMDA)

CONTINUE

CALL BETAIJlL U + 1 )

IF ( ISET .NE. 0 ) GO TO 17

CONTINUE

CONTINUE

JP =y

RETURN

END

FUNCTION EPSIKATIL,M,N,ALENGTH,RLMDA)

DUM1 = ALENGTH

IF( N NE. 0) DUM! = DUM1/2.

IFC M EQ. 0) GOTO 1!

EPSIKAT = (0.5-M °M  /(2.°RLMDA'RLMDA)) *DUMI
RETURN

EPSIKAT = DUM1/2.

RETURN

ENTRY EPSIZN

IFL N EQ. 0 ) GO TO 2

EPSIKAT= ALENGTH / 2.

RETURN

EPSIKAT= ALENGTH

RETURN

ENTRY ETA

EPSIKAT = (N-1)"(N-1) * 3,1415926 °3.1415926 / (ALENATH * ALENGTH)
1+4RLMDA * RLMDA

RETURN
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END

FUNCTION EPSIRZNI(L,M,N,ALENGTH,RLMDA)
- COMPLEX FNORM,DUM2

DUMI = 1,

IF(M.£Q.0) DUMI = .5

DUM2=FNORM (L, M,N,RLMDA, ALENGTH) **2

EPSIRZN=DUM! °REAL (DUM2)/3.1415926

RETURN

END

COMPLEX FUNCTION FNORM(L,M,N,RLMDA, ALENGTH)

DUMI = 3.1415926

IFL M LEQ. 0 ) DUM! = 6,2831852

DUMT=DUM! "EPSIKAT(L,M,N,ALENGTH,RLMDA) "BESSEL {M+!,L)* %2
FNORM=CMPLX (DUM1,0.0)

FNORM= CSQRT {FNORM)

RETURN

END

COMPLEX FUNCTION G1 (X,N)

COMPLEX BETA1, BETA2, BETAN, BETAC, BETAl, BETAWI, OMEGA, C, AK1,
1 AK2, PSI2 -

COMPLEX DUM1T, GDUM, BETA

COMMON / BLKA / BETA1, BETA2, AMACH, GAMMA, OMEGA, ALEVGTH, C, AK!
1, AK2, BETAN, RLMDA, BETAl, BETAC, BETAW!, LHAT, MHAT, NHAT,

1 PSI12,X1, X2

GDUM(A,DUM1,BETA OMEGA AMACH X) = (OMEGA+AMACH BETA) /1A 2-BETA® "2
1) (CEXP(DUMI®X) " (DUMI COSIA X) #ASINIA X)) -DUMT)

IFC x .EQ. 0.0 ) GO TO !

A = N°3.1415926/ALENGTH

BETA = BETA!

DUMI = CMPLX(-AIMAG(BETAY),REAL(BETAY))

61 = GDUM(A,DUM!,BETA,OMEGA, AMACH, X)

IFCN .EQ. 0 .AND. CABS{ BETA2) .LE. '.E-10 ) GO 70 2
BETA = BETAZ

DUMI = CMPLX(-AIMAG(BETA2),REAL (BETA2))

Gl = GAMMA ° (G1 + C °* GDUM(A,DUM1,BETA,OMEGA, AMACH, X))
G1 = CHPLX( -AIMAG(G1),REAL(G!))

RETURN

Gl = CMPLX(0.0,0.0)

RETURN

BETA = C ° OMEGA ° X

Gl = GAMMA ° ( G1 + BETA )

Gl = CMPLX!( -AIMAGIG1), REALIG!))

RETURN



END

COMPLEX FUNCTION G2(N)} .

COMPLEX BETAY, BETAZ2, BETAN, BETAC, BETAl, BETAW], OMEGA, C, AK1,
1 AK2, PSI?

COMPLEX DUMI, BETA,GBUM, DUM

COMMON / BLKA / BETA1, BETA2, AMACH, GAMMA, OMEGA, ALENGTH, C, AK!
1, AK2, BETAN, RLMDA, BETAl, BETAC, BETAWI, LHAT, MHAT, NHAT,
1 PS12,X1, X2

GBUM(BETA,DUM! N, AMACH,OMEGA,ALENGTH) = -(AMACH'BETA'BETA+2,'OMEGA
1 "BETA)/(( N ' 3.1415926 / ALENGTH )°*°*2 - BETA"*2 ) *(CEXP(DUMI®
1 ALENGTH) * DUMI * (=1.)""(N#2) - DUM! )

DUM(DUMI, ALENGTH,NHAT) = CEXP(DUMI*ALENGTH) " (=1.) " (NHAT+2) -1,
BETA = BETA

DUMI = CMPLX(-AIMAG(BETAY) ,REAL (BETA1))

62 = GBUMI(BETA,DUMI, N, AMACH,OMEGA, ALENGTH)

IFC N .EQ. 0 .AND. CABS!( BETA2) .LE. 1.E-10 ) RETURN

BETA = BETAZ2 ‘

DUMT = CMPLX(-AIMAG(BETA2),REAL (BETA2))

62 = 62 + C ' GBUMIBETA,DUMI,N,AMACH, OMEGA, ALENGTH)

RETURN .

ENTRY PS]

DUM1 = CMPLX( -AIMAG(BETA1), REAL(BETA1))

62 = DUMI'DUM(DUMY, ALENGTH,NHAT) / (NHAT**2'3.1415026" "2/ALENGTH" *2
1 -BETA1'*2)

IF{ NHAT _EQ. 0 .AND. CABS! BETA2) .LE. 1.E-10 ) 6O T0 3

DUMI = CMPLX{ -AIMAGI(BETA2), REALIBETA2))

62 = ( 62 +C°DUMI DUMIDUMT, ALENGTH, NHAT) / INHAT**2%3.1415926° 2/
IRALENGTH°'2-BETA2"2))/EPSlZN(LHAT.HHAT,NHAT.ALENGTH,RLHDA)

ETURN

362 = (62 + C " ALENGTH ) 7 EPSIZN(LHAT,MHAT ,NHAT, ALENGTH,RLMDA)

RETURN

END

THE FOLLOWING 1S AN EXAMPLE OF THE PUNCHED CARD INPUT.
REFERENCE 0.90 0.00 2.70 0.33 1.20 0.9166 0.00
5.0 0.0 0.0 0.90 0.01 0.0! 11 0 3 30NO
5.0500000 0.0000000 0.9000000 0.0000000
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THIS 1S ENGINE NUMBER REFERENCE

THE COEFFICIENT MATRIX 1S 3 X 30

THE MACH NUMBER IS .33000000000000

THE RATIO OF SPECIFIC HEATS IS 1.,20000000000C0
THE FREQUENCY 1S 1,6570654020000 0.

THE LENGTH OF THE COMBUSTOR 1S - 2.7000000000000

THE PRIMARY MODE ASSUMED IS LHAT = 1 MHAT = | NHAT =

THE LINER BEGINS AT 0.0000 AND ENDS AT .9C00
W/W0 = .90000000000000 0.

A= 1,0000000000000 0.

BETAN = 2.74780000000000€E-02 0.

6 = .91660000000000 2.

BETAC =  .16666666666667 0.

K= 5.0000000000000 0.

BETAW] =  .28047988577675 .23813090794998

N = -1.66057144750020E-02 -.72160881196963 !

BETAWID =  .28047988577675 .25813090794997

N = -1,66057144750020E-02 -.7216088119696! !
BETAI( 1) = -3,62072818079238E-02 .16649307640463

N = .94305236911492 -.50452447395341 |
BETAI( 2) = 7.57432135587427E-03 .29698397(044242
N = .81038084437614 -.899951425583(8 !
BETAI( 3) = 3.47010788505651E£-02 .28016921968467
N = .72817854893768 -.8489976354(808 !
BETAI( 4) = 3,02237853398196E-02 .27965997230247
N = .74174610503085 -.84745446152262 !
BETALI( 5) = 3.20665167674021E-02 .28192424117869
N= .7361620704018! -.85431588235965 !
BETAI( 6) = 3.2779920419644¢E-02 .28157699072313
N = .7340002411€259  -.835326360825190 |

BETAI( 7) = 3.29116946035384E-02 .28169303136132
N= .73360092544382 -.85361524654944 |

0



